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Comparisons of the vector method and tensor method for
simulating liquid crystal devices

J. E. ANDERSON*, P. WATSON, and P. J. BOS

Liquid Crystal Institute and Chemical Physics Interdisciplinary Program,
Kent State University, Kent OH 44242, USA

(Received 24 April 2000; accepted 25 July 2000 )

In calculating the director con� guration in a liquid crystal device, two methods are commonly
employed: a vector model and a tensor model. In this paper, we compare and contrast these
methods for liquid crystal devices consisting of a layer of liquid crystal sandwiched between
two plates. We compare the reliability and accuracy of the results, the speed of computation
and the complexity of implementations of each method.

1. Introduction
Mathematical simulations provide a powerful tool for

the understanding and optimization of liquid crystal
displays (LCDs). Usually these simulations are made
with a one-dimensional constraint on the change of the
director, n [1, 2]. However, if a truly accurate model is
desired, the simulations must be performed allowing the
director to move in two or three dimensions [3–5].
Some LCD modes, such as in-plane-switching (IPS),
multi-domain-vertical-alignmen t (MVA), electro-optic-
compensation (EOC), and any multi-domain con� guration,
must use these more advanced simulation techniques, since
they are designed to use a multi-dimensional eŒect, and
cannot therefore be approximated by a one-dimensional
simulation. These more advanced simulations take more
computing time, and it is necessary to know that the
results can be trusted and that the program is optimized

Figure 1. Schematic drawing of the nematic liquid crystalto run as fast as possible. It is the aim of this paper to
phase showing that the director cannot be said to pointestablish, in terms of the mathematical model, how to
to either the right or left. The arrow shows the average

achieve these requirements.
direction of alignment, which is the director.

2. Inversion symmetry this equivalence is not kept [6–8]. Kelly originally
In experiment, one cannot discern an absolute direction

pointed out that the tensor approach did not give correct
of the director. This is because, on average, half of the

answers for some two-dimensional simulations [9]. We
molecules are pointing in the opposite direction to

have also found cases in which the tensor approach gave
the other half. This is shown schematically in � gure 1.

not only inaccurate results, but non-physical results. In
This symmetry is typically called ‘inversion symmetry’

each of these cases, the tensor approach allowed the
or ‘the n and Õ n equivalence’. Because this n and Õ n system to transform between topologically inequivalent
equivalence of the free energy found in experiment is

states without a disclination, which is impossible in
retained in the tensor approach, it has generally been

reality [10, 11]. Although we use only one form of the
assumed to be superior to the vector approach, in which

tensor approach here [6, 7], this problem is suspected
to exist in all forms, as it is a fundamental aspect of a
mathematical tensor.*Author for correspondence; e-mail: janderson@hanach.com

L iquid Crystals ISSN 0267-8292 print/ISSN 1366-5855 online © 2001 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/02678290010001455

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



110 J. E. Anderson et al.

3. Mathematical models As stated above, the nematic phase is partially charac-
terized by the fact that the free energy is invariant underThere are many approaches to the simulation of

LCDs. The simplest method uses two angles to represent the transformation n � Õ n. This equivalence is not
maintained in the vector approach, as shown by severalthe director: h, the polar angle measured from the surface

normal, and w, the azimuthal angle (the h Õ w approach) authors [5–8]. To correct this, the free energy is often
written in terms of the order parameter tensor given in[1]. The Oseen–Frank free energy density, equation (1),

is written in terms of these variables, as given in equation (5).
equation (2).

Q
jk

5 S (n
j
n
k

Õ d
jk

/3). (5)

f 5
1
2

K11 ( = ¯ n)2 1
1
2

K22 (n ¯ = Ö n 1 q0 )2 Here j, k 5 x, y, z, d
jk

is equal to 1 if j 5 k and 0 otherwise,
and S is the scalar order parameter. The diad, (n

j
n
k
), in

the order parameter tensor in eŒect squares the director
1

1
2

K33 |(n Ö = Ö n) |2 Õ
1
2

D ¯ E (1 )
components, thus restoring the inversion symmetry
found in experiment.

The free energy written in terms of this tensor is givenf 5
1
2

K11 sin2 hAdh

dzB2

in equation (6) [12]. The G(j)
i

terms are ‘de Gennes
strain terms’. Note that the last two terms in equation (6)
are electric energy terms. This will hereafter be referred1

1
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dzB 1 q2
0D

to as the tensor approach.

1
1
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In this representation, if h becomes close to zero

(the homeotropic state), the free energy becomes almost 1 AK33
Õ K11
4 BG(3)

6
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5 q0K22
G(2)

4
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Õ
1
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e0 7 e 8
dV
dj

dV
djindependent of w, as the azimuthal angle is unde� ned

when the director is homeotropic. This leads to math-
ematical instabilities in simulation, and therefore this Õ

1
2

e0De
dV
dj

dV
dk

Q
jk

S
(6)

approach is rarely used. The next approach is to use the
cartesian coordinate vector, n 5 (n

x
, n

y
, n

z
) (the vector where:

approach) . Writing the free energy in this way removes
any mathematical instability when any director in the G(2)

1 5 Q
jk,l

Q
jk,l

, G(2)
2 5 Q

jk,k
Q

jl,l
, G(2)

3 5 Q
jk,l

Q
jl,k

,
system is close to homeotropic.

G(2)
4 5 e

jkl
Q

jm
Q

km,l
, G(3)

6 5 Q
jk

Q
lm,j

Q
lm,k

(7)
To calculate director dynamics, the viscous torque is

set equal to the elastic torque, in equation (3), where c1 To calculate the new value of the director using the
is the rotational viscosity [1–7]. This can then be tensor approach, the functional derivatives need to be
discretized to � nd the new value of the director. This taken with respect to Q

jk
, instead of n

i
. This can be

new director then needs to be renormalized to be of unit done using the chain rule, equation (8) [7]:
length [7].

d f
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5

d f
dQ

jk

qQ
jk

qn
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qQ
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qn
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5 S(n

j
d
ki

1 n
k
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dn

i
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Dn
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Dt
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dn
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[ nnew

i
5 nold

i
Õ

Dt
c1

d f old

dn
i

Here summation over repeated indices is assumed. When(3 )
the functional derivative of f with respect to Q

jk
is

where in three dimensions: taken, the derivative pulls past the elastic constants (K
ii
)

and is taken on the de Gennes strain terms.d f
dj

5
q f

qj
Õ

d

dxC q f

q(dj/dx)D Õ
d

dyC q f

q(dj/dy)D If a system contains defects with strength N Ö (1/2)
where N is any odd integer, the vector approach, because
it lacks inversion symmetry will not calculate the energy

Õ
d

dzC q f

q(dj/dz)D (4 ) correctly. However, in cases where such defects exist,
one of the basic assumptions of continuum theory, that
changes in the director are on length scales much largerwhere j is the variable whose dynamics are desired.
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111Vector and tensor L C simulation methods

than a molecular length and the system is therefore equivalent. By using the correct driving waveform, each
pixel can be made to be in either state. To ensure thatcontinuous, breaks down, and continuum theory itself

is mathematically insu� cient. both the 0 degree twist state and the 360 degree twist
state can be formed in these devices, a chiral dopant is
added such that both states are (or nearly are) of equal4. Topologically equivalent and inequivalent states

As pointed out by Porte [10] and Thurston [11], energies. This usually makes the third state, the 180
degree twist state, the lowest free energy. Figures 2 (a)every director con� guration cannot be continuously

transformed to every other director con� guration. There and 2 (c) show the 0 degree twist and 360 degree twist
states, respectively. If the surface contacting director onare certain sets of con� gurations that can be continuously

transformed between each other within the set, but the bottom surface is described by (hp , wp ), the same
value describes the surface contacting director on thecannot be continuously transformed to a con� guration

in another set. A director con� guration is said to trans- top surface for the 0 degree and 360 degree twist states.
However, for the 180 degree twist state, the surfaceform continuously to another con� guration if no defect

is involved. contacting director on the top surface is given by
(180 Õ hp , wp 1 180).To illustrate topological equivalence and inequivalence ,

we will use the Bistable Twist Cell device. The three For example, point A on the sphere shown in � gure 3
represents one boundary condition, namely h 5 80states that can be found in this device are shown in

� gure 2. This device uses the fact that the 0 degree twist degrees and w 5 0 degrees. For the 0 degree state and
the 360 degree state, point A represents the director atstate and the 360 degree twist state are topologically
both boundaries, as pointed out above. The 360 degree
twist con� guration is also shown in � gure 3. The 360
degree twist state is said to be topologically equivalent to
the 0 degree twist state because the representation on the
unit sphere of the 360 degree state can be continuously
transformed to the 0 degree state. The 0 degree state is
a uniform structure, and so the entire con� guration
is represented by the point A. Point A ¾ represents the
h 5 100 degrees and w 5 180 degrees boundary condition
needed for the top surface in the 180 degree state.

Figure 3. Unit sphere representation of topologically equivalent
and inequivalent states. The n and Õ n equivalence of the
nematic phase causes the diametrically opposed points, A

Figure 2. The three possible states in a Bistable Twist Cell: and A ¾ , to be the same physical boundary condition. It is
clear that the 360 degree and 0 degree states (entirely(a) 0 degree twist state, (b) the undesired 180 degree twist

state, and (c) 360 degree twist state. Note that the 0 degree represented by point A), are topologically equivalent,
because they can be continuously transformed from oneand the 360 degree twist states have the same vector

boundary conditions. The 180 degree twist state, however, to the other. The 180 degree state, however, because one
of its boundary conditions is represented by point A ¾ , ishas one boundary condition pointing in the opposite

direction. The director con� gurations were drawn using topologically inequivalent to either the 360 degree or 0
degree states.LC3Draw visualization software.
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112 J. E. Anderson et al.

Figure 4. Stretching of a uniform
state into a splay state. No
amount of stretching will ever
cause the deformation to become
a bend deformation, shown
on the right. The lines denote
the continuous nature of the
nematic phase.

The inversion symmetry found in experiment tells us will show, for a deformation to slip between adjacent
grid points during the computation and for the simulationthat points A and A ¾ , which are diametrically opposite

on the sphere, are exactly the same physical boundary to show inaccurately a transition between topologically
distinct states. This is especially true for more complicatedcondition. That is to say, there is no way in experiment

to diŒerentiate between the two. However, it is clear systems, such as highly twisted cholesterics.
Figures 5, 6 and 7 present three cases where the tensorthat there is no way to transform the 180 degree twist

state to either the 360 degree state or the 0 degree state approach incorrectly shows continuous transitions between
topologically inequivalent states. In all � gures, (a) referswithout ‘moving’ the boundary condition at A ¾ to lie at

point A. Therefore, within the realm of the Frank–Oseen to the con� gurations calculated by the vector method,
and (b) refers to the con� gurations calculated by thedescription of the director � eld, it is impossible to

transform between the 180 degree twist state and the 0 tensor method. We used the physical parameters of ZLI
4792 from Merck in all simulations. The cell thicknessdegree or 360 degree twist states.

The physical reason that topologically distinct states was assumed to be 5 mm and in each case the applied
� eld, whether it be an electric � eld caused by applyingexist is that liquid crystal systems are continuous, not

discretized as we think of them in simulation. If a 10 V, or a magnetic � eld, was turned on at 0 ms and oŒ

at 60 ms.uniformly aligned con� guration is stretched, as shown
in � gure 4, it forms a typical splay state. No matter
how much we try to stretch it, it can never be made to
go into the bend state in a continuous manner. A
disclination, which is outside the scope of the Frank–
Oseen description, is required to move across the sample
for this transition to occur.

We will now investigate the two mathematical models,
the vector model and the tensor model, to determine
whether either allows a non-physical continuous transition
between topologically inequivalent states.

5. Simulations
Although the equivalence of n and Õ n exists in the

nematic phase, we will show here that, because a
discretized system is used in simulations, care should
be taken when such symmetry exists in programs. The
concern of including this equivalence in simulations of
liquid crystal devices is that it can lead to non-physical
results when a director deformation falls completely
between two adjacent grid points, as can be considered
to happen when the angle between the directors of two
adjacent grid points is greater than 90 degrees. If a

Figure 5. Dynamics of pi-cell with 10 V applied. Voltage wasdeformation does slip completely between two adjacent
turned on at 0 ms, and removed at 60 ms: (a) used thegrid points, the grid is obviously too coarse and a � ner
vector approach and (b) used the tensor approach. The

grid should be used. However, we seldom know before tensor approach clearly shows a continuous transition
we start the calculation how many grid points should from the splay state to the bend state, which is impossible

in experiment.be used. It is possible with the tensor approach, as we
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113Vector and tensor L C simulation methods

Figure 7. Dynamics of a 180 degree STN with a d/P of 0.3Figure 6. Dynamics of 360 degree STN with d/P of 1.0
and 10 V applied. The voltage was turned on at 0 ms and and a lateral magnetic � eld applied. The magnetic � eld

was turned on at 0 ms and removed at 60 ms: (a) used theremoved at 60 ms: (a) used the vector approach and
(b) used the tensor approach. The tensor approach again vector approach and (b) used the tensor approach. The

tensor approach clearly shows a continuous transitionclearly shows a continuous transition between two topo-
logically distinct states, the 360 degree and the 180 degree from the 180 degree twist state to the almost uniformly

aligned splay state. The light gray parts of the directortwist states. The light gray parts of the director are away
from the viewer. are away from the viewer.

vector approach therefore gives an inexact high valueWe calculated the dynamic director con� guration as
a function of time for a pi-cell with pretilts of 10 degrees of the elastic free energy density, but yields a more

physically correct result than the low elastic free energyusing both methods, as shown in � gure 5. We started
the system in the splay state and applied 10 V at time density given by the tensor model.

The results of dynamics calculations of a 360 degreet 5 0. The voltage was applied for 60 ms, which was
long enough for both simulation methods to show the super-twisted-nem atic (STN) with 10 V applied at t 5 0 ms

and removed at t 5 60 ms is shown in � gure 6. Thecentre region to be homeotropic. When the � eld was
switched oŒ, however, the simulation using the vector system had a thickness to pitch ratio (d/P) of 1.0, making

the 360 degree twist state the lowest energy state. Theapproach showed the system return to the splay con-
� guration, while the simulation using the tensor approach alignment in this case was a splayed alignment with 5

degree pretilts. If a non-splayed alignment was used, theshowed a continuous transformation to the bend state.
In an actual sample, these two states are topologically material would switch from the 360 degree twist state

to the 0 degree twist state, which are topologicallyinequivalent and therefore cannot be transformed from
one to the other without the movement of a defect. It equivalent, and of no interest to this investigation. Again,

a voltage of 10 V was high enough and was held for acan be seen that, at t 5 60 ms, the region of splay � ts
entirely between two adjacent grid points. That is, the long enough time for the directors in the centre of the

cell to become homeotropically aligned. Upon removaltwo directors in the middle of the cell became completely
homeotropically aligned. In the case of the vector model, of the � eld, however, the tensor approach showed the

system transforming from a 360 degree twist state to athis leads to a high free energy density because the
directors at grid points on either side of the ‘invisible’ 180 degree twist state, two topologically inequivalent

states.wall point in opposite directions. However, in the tensor
approach, when the splay region slips between two The third simulation used a 180 degree STN having

a d/P of 0.3 with a lateral magnetic � eld applied, theadjacent grid points, the n and Õ n equivalence yields a
(low free energy) uniform homeotropic director con- results of which are shown in � gure 7. The magnetic

� eld was assumed to be in the x-direction. In this case,� guration, thus ‘losing’ the director deformation. The
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114 J. E. Anderson et al.

the centre directors are not homeotropically aligned, but greater than 75 V, even at grid spacings down to 25 nm.
As stated before, the correct number of grid points tohomogeneously aligned. The vector method again calcu-

lated a high free energy density in the middle of the cell, use is not always known before the calculation is started,
and the tensor method may not alert the researcher tocaused by the two adjacent directors pointing in opposite

directions, while the tensor method, because of the n the fact that a deformation has slipped between grid
points, whereas the vector method always will.and Õ n equivalent, did not. This low free energy density

caused the tensor method to transform the system con- To compare the accuracy of the two methods, we
calculated the RMS error in the calculations as a functiontinuously to the topologically distinct (and higher free

energy) almost uniform splay state. Figure 8 shows a of grid size. To calculate this error, we used an untwisted
electrically controlled birefringence (ECB) device systemclose up of layers in the middle of the cell in � gure 7.

This demonstrates the problem with the tensor approach with 3 V applied. Figure 9 shows the RMS error as a
function of grid size for both simulation methods. Thewhen a deformation (a pi-wall in this case) slips com-

pletely between two adjacent grid points. The n and Õ n computed solution using 100 grid points was assumed
to be the correct solution, as the director con� gurationequivalence causes the tensor approach to ‘lose’ the

deformation. was almost independent of grid size when that many
points were used. It can be clearly seen that the vectorThe simulations shown here use an even number of

lattice points, thus not putting one directly in the centre method always maintains a lower RMS error than the
tensor method. The lines are exponential � ts shown onlyof the cell. When an odd number was used, we found

that the symmetry point of the deformation was pushed to clarify the data.
The vector approach is also a simple method tobetween grid points (probably due to small numerical

� uctuations) and the tensor approach still switched implement, coming straight from the Frank–Oseen free
energy equation. To calculate the functional derivativestopologically distinct states.

One may argue that using a larger number of grid of the free energy density with respect to the director
components, needed for the update formula given inpoints would correct this non-physical result. However,

we found that it only causes the transition between topo- equation (4) for the tensor approach, we must � rst
calculate the functional derivatives of the free energylogically inequivalent states to happen at larger applied

� elds, not to stop happening completely. When a larger density with respect to the components of the order
parameter tensor. This is due to the chain rule as shownnumber of grid points (> 50) was used, both approaches

gave the correct answer with 10 V applied. However, for in equation (8 ). This adds an extra subroutine that must
be implemented in code, and called nine times for eacheach grid spacing tried, we found there was always a

voltage (which depended on grid spacing) high enough iteration step.
Also, we have found, probably due in large part toto force the deformation to � t completely between two

adjacent grid points and the tensor approach would the relative simplicity of the vector method, that it is
computationally faster. For our implementations, theagain change topological states. This voltage was never

Figure 8. Close up of dynamics of the layers in the middle of
the cell in � gure 7, showing the tensor method ‘losing’ the

Figure 9. Calculated RMS Error as a function of grid size forpi-wall between lattice points because of the n and Õ n
equivalence. The lines illustrate the director distribution the tensor and vector methods. The lines are exponential

� ts shown to clarify the data. The solution using 100 gridassumed by each energy model. The light gray parts of
the director are away from the viewer. points was assumed to be the exact solution.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
1
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



115Vector and tensor L C simulation methods

energy, by the continuity of the director � eld, as we
have shown in � gure 3. However, when the voltage is
increased, the discretization causes the angle between the
directors to increase and thus the tensor model would
calculate a splay free energy across the wall. This will
yield incorrect results when investigating the reverse-tilt
domain and how to remove it from a device.

6. Conclusion
Because the n and Õ n equivalence of the free energy

found in experiment is retained in the tensor approach
to simulations, it has been assumed to be superior to
the vector approach, which it is not. We have shown
three cases where the n and Õ n equivalence causes the
tensor method to give non-physical results. The vector
approach is also found to be faster and require fewerFigure 10. 2-D cartoon of reverse-tilt domain in a 90 degree

TN. At low voltages, both the vector and tensor methods grid points than the tensor method.
will calculate bend energy across the wall. At higher
voltages, however, the tensor method will calculate the Funding for this project was provided by DAFPA
energy to be splay energy, which will yield incorrect

grant No. N61331-96-C-004 2 and was performed in anresults. As shown in � gure 3, no amount of ‘stretching’
institute funded by ALCOM grant No. DMR-8920147-09 .should make the deformation switch from bend to splay.
Some � gures were reproduced with permission from
reference [13].vector approach was roughly 1.3 times faster for one-

dimensional calculations and 3 times faster for two- and
three-dimensional calculations. Although these numbers References
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